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• The Deep Space Network is the 
largest and most sensitive scientific 
telecommunications facility

• Primary function: provide two-way 
communication between the Earth 
and spacecraft exploring the solar 
system
– Instrumented with large parabolic 

reflectors, high-power transmitters, 
low-noise amplifiers & receivers, etc.

• Three complexes ~ 120 degrees apart 
around the world at Goldstone, 
California; near Madrid, Spain; and 
near Canberra, Australia

The Deep Space Network

At Each Complex

• 1  70-meter diameter antenna
– Largest and most sensitive

• 1  34-meter diameter high-efficiency
– Precision-shaped reflector

• 1 or more 34-meter beam waveguide
– Instruments at ground level

• 1  26-meter diameter
– Earth orbiting satellites

• 1  11-meter diameter
– Space VLBI
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Radio Science Investigations

Utilize the telecommunication links between 
spacecraft and Earth to examine changes in the 
phase/frequency, amplitude, and polarization of 
radio signals to investigate:

– Planetary atmospheres
– Planetary masses and interiors
– Planetary rings
– Planetary winds
– Planetary surfaces
– Planetary shapes
– Solar corona and wind
– Comet material
– Fundamental physics & relativity
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The DSN: A Science Instrument

Signal Detector Data Prep

Signal Detector Data Prep

Science
Target

Science
User

Science Instrument (e.g., camera)
on-board spacecraft

Data Communicated
to ground

Science Instrument on ground

Data
Delivery

DSN’s primary function is communication and data delivery - optimize links, e.g., G/T
Also an instrument for science research - optimize performance, e.g., phase stability

Radio science activities stretch DSN performance capabilities in:
frequency/amplitude stability, SNR, position/velocity accuracy, media calibration
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Radio Science Receiver

• Independent of the tracking and 
telemetry receiver

• Open-loop digital down-conversion
– No lock, no tracking
– Recording in pre-selected 

bandwidth / sampling rate

• Tuned by frequency prediction file
– Generated from navigation 

solution

• Operated by scientists & their staff
– Most familiar with experiment for 

quick reaction

Advantages over tracking receiver

• Better stability
– Design of components with 

Allan deviation and phase 
noise specifications

• Capture signal dynamics

• Capture multi-path

• Choices of bandwidth and sampling

• Higher quantization

• Creative post-pass processing
– Arraying, landing tone 

processors, orbit insertion, etc.
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What Limits Precision?

• Choice of frequency (link)

• Frequency/phase stability
– Spacecraft & ground components

• Signal strength (signal to noise ratio)

• Amplitude stability
– Electronic components
– Mechanical components
– Antenna pointing stability

• Intervening media

• Non-gravitational forces

• Accuracy of trajectory reconstruction
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Noise Disturbances in Two-Way Doppler Link
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Doppler Noise Model

• We examine noise processes in Radio Science data acquired by the
Deep Space Network

• Most sensitive instrumentation and experiments to date achieve 
fractional frequency fluctuation noise of 3E-15 at 1000-second 
integration time
– Corresponding to better than 1 micron per second velocity noise
– Instrument: Cassini spacecraft and DSS-25

• Our model focuses on the Fourier range in the milli-Hz to 1 Hz

• We identify phenomena limiting current Doppler sensitivity and 
discuss prospects for significant sensitivity improvements

• This is useful to the science community
– Estimating uncertainty in Doppler observations
– Predicting performance of future observations
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TRANSMITTERS
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RCVR/RECORDER

SUBSYSTEM

OPEN LOOP
RCVR/RECORDER
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Uplink Possibilities
X-band   ~ 7.9 GHz - command
Ka-band ~ 34 GHz

Downlink Possibilities
S-band   ~ 2.3 GHz
X-band   ~ 8.4 GHz - telemetry
Ka-band ~ 32 GHz

Cassini Meets Marconi:

HGA Gain ~ 47 dBi
Power ~ 20 W
EIRP ~ 88.6 dBm
Digital communication: BPSK
Bit rates: 5 bps to 248 kbps
Phase modulated onto carrier

or subcarriers of 360 or 22.5 kHz 
Reed-Solomon outer code

Convolutional inner code
DSN 34-m BWG

Gain ~79 dBi, power ~4 kW
Space Loss ~ -300 dB (~ 9 AU)
Typical OWLT ~ 90 minutes
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Principal Noises

• Instrumental noises: random errors introduced by ground or spacecraft

– phase fluctuations associated with finite signal-to-noise ratio
– noise due to the ground and spacecraft electronics
– un-modeled bulk motion of the spacecraft or ground station
– frequency standard noise
– the spacecraft oscillator to which the downlink is referenced
– antenna mechanical noise

• Propagation noises: random frequency/phase fluctuations caused by 
refractive index fluctuations along the line of sight caused by phase 
scintillation as the radio wave passes through

– Troposphere
– Ionosphere
– solar wind

• Systematic errors
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Example of Cassini Data Quality
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Noise Budget
• Characterize contributions to 

noise from instrumental and 
natural sources

• Noise in one-way propagation 
at S-, X-, and Ka-bands as 
function of angular distance 
from the Sun

• Plasma scintillation scales with 
Sun-Earth-Probe (SEP) and 
radio frequency

• Tropospheric scintillation is 
independent of RF -- better at 
night and in winter

• AMC-calibrated troposphere

• Antenna mechanical noise 
shown at SEP where measured
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• Blind Pointing

• Conscan

• Monopulse

• Aberration Correction

DSN: Pointing Schemes

Source: W. Imbriale, DESCASNO monograph
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• High stability frequency and 
timing reference

– Hydrogen Maser
– Superconducting Cavity 

Maser Oscillator
– Linear Trapped Ion

Compensated sapphire oscillator

Timing Is Everything
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Advanced Media Calibration

• Advanced Water Vapor Radiometer along 
with other meteorological systems

• Measures path delay due to Earth 
troposphere

• Critical to supporting precision 
experiments at Ka-band

• Remotely operated by Radio Science 
Systems Group

• Results of calibration capability shown 
here are from Cassini Solar Corona 
Experiment and Gravitational Wave 
Experiments with AMC units boresighted
with the DSS-25 beam and co-located 
with  DSS-25
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• Galileo mission indicated possible presence of ice surface with tide-raising 
forces generating heat to melt underside of the icepack
– Given the possibility of liquid water, there is the exciting possibility of life

• Presence or absence of a subsurface ocean is of considerable interest
– Can be resolved with observations including Radio Science data

• A future mission to Europa operating at X-band coherent link, estimate of 
Doppler accuracy required for ocean detection is 0.1 mm/sec
– 1 sigma, t = 60 sec, over 3 Europa days (Europa day = 3.55 Earth days)

• Corresponds to 6.7 X 10-13

• Examine noises

Application to Future Missions: Europa Subsurface Ocean?
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• Interplanetary plasma scintillation noise = 4 X 10-13

– Assuming Kolmorgrov spectrum scaled to 1000 seconds

• 34-m antenna mechanical noise should be less than this

• Station timing system noise is less than this

• Mission can achieve objective with only X-band link at SEP > 20 deg.

• Tropospheric calibration should not, in this case, be required to meet the 
specification for a simple detection of the candidate ocean

• Robustness of the mission against large solar events, observational 
margin, and the possibility of detecting more subtle signals in the data 
would accrue with
– multi-link observations
– tropospheric calibration

• These would be especially important if the mission were of short duration

Mission to Explore Subsurface Ocean on Europa
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• If requirements for detection turn out to be smaller than 0.1 mm/sec

• If robustness is required against large solar events, observational 
margin, and the possibility of detecting more subtle signals in the data

• If mission is of short duration

• If mission target body is in the inner solar system
– E.g., Mercury mission

• We demonstrate from Cassini experience the requirements for
– Multi-link observations
– Tropospheric calibration

When this is not good enough
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Long Term Goals and Future Directions

• Improve clock stability (spacecraft & 
ground stations)

• Apply multi-frequency links (spacecraft 
& ground stations)

• Next generation media calibration 
systems

• Design stable & quiet modes for 
precision Doppler

• Dual-polarization receiving systems

• Advance technology for quiet and 
precisely pointed spacecraft

• Advance technology for spacecraft-to-
spacecraft links

Future Directions

• Uplink Radio Science

• Optical Science

• Station Arrays

Order of Magnitude Improvement in 
Doppler & Range

• Advance planetary interior studies

• Improve precision tests of relativity 
and gravitational waves

• Advance planetary atmospheric 
occultation

• Improve navigation

• Improve engineering applications
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• Cassini & DSN hold “record” for deep-space 
Doppler sensitivity ≈ 500 nanometers/sec 
under favorable conditions)

• Based on noise transfer functions and  (in 
some cases) independent tests, the 
aggregate Doppler noise can be 
decomposed into FTS, plasma, troposphere, 
antenna mechanical, etc. to create a noise 
budget

• This budget can be used for

– Error model of Doppler observations
– Prediction of noise in future 

observations/specification of required 
configuration for a given required 
sensitivity

• http://radioscience.jpl.nasa.gov

Conclusion
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